FLIPPED LEARNING, LEARNING ANALYTICS and DISTANCE EDUCATION Keynote for BestEdu project

Erkko Sointu (PhD, Education)

Professor of Special Education at UEF

School of Educational Sciences and Psychology / Special Education Philosophical Faculty University of Eastern Finland

Erkko mumble in this presentation is about:

Recall Flipped Classroom and Flipped Learning
 Research of Flipped
 Learning Analytics
 Distance Education
 Research 1 and 2
 So what BestEdu???

Recall Flipped Classroom and Flipped Learning

Flipped Classroom as one possible tool for change

(Picture adapted from Toivola & Silfverberg 2015; see also Toivola, Peura & Humaloja 2017)

Flipped Classroom as one possible tool for change

(Picture adapted from Toivola & Silfverberg 2015; see also Toivola, Peura & Humaloja 2017)

TRADITIONAL CLASS

FLIPPED CLASSROOM

Blooms Taxonomy

Adapted from Krathwohl (2002); Williams (2013)

TRADITIONAL ONLINE ONLINE FLIPPED Twist Create **Evaluate** Analyze Apply ‡ 54. • Understand Remmber

Blooms Taxonomy

Adapted from Krathwohl (2002); Williams (2013)

Why? Response to a real need

(21st century skills e.g., Voogt & Pajera Roblin, 2012)

Research of Flipped:

Preliminary evidence of key factors in successful flipping: predicting positive student experiences in Flipped Classrooms.

> Sointu , E., Hyypiä, M., Lambert, M. C., Hirsto, L., Saarelainen, M. & Valtonen, T. (2022). Preliminary evidence of key factors in successful flipping: predicting positive student experiences in Flipped Classrooms. *Higher Education. The International Journal of Higher Education Research.* Accepted 9.3.2022.

Background

- Student satisfaction towards flipped varies (Strelan et al., 2020)
- Factors for satisfaction are more unknown
 - Pedagogical dimension
 - Students view of their teachers' pedagogical content knowledge (PCK)
 - > Pedagogical perceptions about teaching that is aimed at understanding (UND)
 - Constructive feedback
 - Level of experienced difficulty of FC (DIFF)
 - Guidance for the FC approach (GUID)
 - Social dimension
 - Collaborative working
 - Support from other students
 - Safe atmosphere for learning (SAFE)
 - Technological dimension
 - Students experienced the added value of ICT in education (AVICT)
 - Students' readiness to use ICT for studying (TECH)

Need to invesgigate what factors create satisfaction

Methods

Participants and procedures

- University students (N = 414) at UEF, 24 courses
- Data collected during 2016-2017
- Informed consent, GDPR, ethics ok.

Analyses

- Explorative factor analysis
- Confirmatory factor analysis (CFA)
- Latent regression model (CFA + regressio)
- Pratt's (1987) measure (relative importance and contribution of each predictor in the model)

Guidance for the FC approach (**GUID**)

Pedagogical perceptions about teaching that is aimed at understanding (**UND**)

Safe atmosphere for learning (SAFE)

Students view of their teachers' pedagogical content knowledge (**PCK**)

Even though

- Level of experienced difficulty of FC (DIFF) was one negative contrubutor, and
- Students experienced the added value of ICT in education (**AVICT**) another contributor in the model
- → Based on Pratt's indicator, these did not contribute uniquely to the model.

IF YOU WANT TO SUCCESS
WITH FLIPPING:
1. GUIDE TO FC
2. AIM FOR UNDERSTANDING
3. CREATE SAFE ATMOSPHERE
4. MAKE SURE YOU CAN TEACH
5. MAKE SURE YOUR STUDENTS CAN USE ICT

→ THESE EXPLAIN 82,3 % OF THE SATISFACION FLIPPED PROVIDES AN INTERESTING VENUE FOR LEARNING ANALYTICS! **Learning Analytics**

UEFIOAHOT

LEARNING ANALYTICS FOR SUPPORTING LEARNING

Utilization of learning analytics in the various educational levels for supporting self-regulated learning (OAHOT)

https://sites.uef.fi/oahot/

UNIVERSITY OF

EASTERN FINLAND

Leverage from 2014-2020

European Union European Regiona

UEF Learning analytics (LA)

- "measurement, collection, analysis, and reporting of data about learners and their contexts, for the purposes of understanding and optimizing learning and the environments in which it occurs" (LAK, 2011).
- Relies mainly on data from digital systems (e.g., digital learning environments) that students produce during their learning.
- Can provide teachers with tools to adapt lessons for those with different abilities (Kuhl et al., 2019).
- A major challenge is how pedagogical practices can fully take advantage of LA and how it can be integrated into teachers' work (Kuhl et al., 2019).
- The rich data itself as its sources does not easily transform into meaningful information that can be used for supporting teaching and learning processes (e.g., Greller & Drachsler, 2012)

Distance Education

UEF Distance Education

- Several ways to implement
- NOT EMERGENCY ONLINE TEACHING (EOL) (cf. Georgsen, 2021a, 2021b; Hodges et al., 2020; Selwyn et al., 2020).
- Flipped Learning as an approach
 - > Materials available for studying in own pace
 - > Own materials can be used
 - Teacher availability
- Digital learning environment
 - > Learning Analytics (LA) that student and teachers can use
 - > Dispositional LA (DLA) for teacher to understand more

UEF// University of Eastern Finland

ОАНОТ

UEF

1.

2.

3.

DOES THIS WORK?!?!?

UEF// University of Eastern Finland

Research 1 (of LA): Learning analytics and Flipped Learning in online teaching for supporting preservice teachers' learning of quantitative research methods.

Sointu , E., Valtonen, T., Hallberg, S., Kankaanpää, J., Väisänen, S., Heikkinen, L., Saqr, M., Tuominen V., & Hirsto, H. (2022a). Learning analytics and Flipped Learning in online teaching for supporting preservice teachers' learning of quantitative research methods. *Seminar.net – International Journal of Media, Technology & Life-long Learning*.

Research 2 (of LA):

Emotional behavior in quantitative research methods course for preservice teachers. Learning analytics approach

Sointu ., E., Saqr, M., Valtonen, T., Hallberg, S., Kankaanpää, J., Tuominen, V., & Hirsto, L. (2022b). Emotional behavior in quantitative research methods course for preservice teachers. Learning analytics approach. *In Proceedings of SITE Conference*. Washington, D.C., United States: AACE.

UEF OAHOT implementation

- 1. Research studies, an important part of teacher training in Finland
- 2. Quantitative research methods (QRM) are challenging for students
 - From research and practice perspectives (e.g., DeVaney, 2010; Väisänen & Pitkäniemi, 2008; Ylönen & Väisänen, 2005)
 - Fear, worries, anxiety
 - Experienced difficulties in math and previous QRM courses
- 3. This challenges teaching practices, and learning, new approaches needs
- 4. COVID-19 and distance education!

UEF Methods Context

- Preservice teachers / Quantitative methods course / fall 2020
 - Distance education (COVID): Zoom and Teams tandem
 - Valamis –digital learning environment for learning, teaching, using analytics for learning and supporting students

Participants and procedures

- Well informed, possibility to ask questions etc.
- DLA part of their studies (reflection of own learning)
- All data collected from Valamis
- UEF ethics approval (statement 11/2020)
- I was the teacher in the course, research after the course (ethics)

OAHOT UEF DATA

- Research 1: DLA (i.e., questionnaires in Valamis)
 - Anonymous data N = 36 (response rate 95 %; $M_{age} = 25,9$).
 - Aim was to know, how Self-regulation, Self-efficacy for learning,
 Orientations for learning and Experienced emotions change during the course
- Research 2: DLA and LA
 - Anonymous data N = 40
 - Time and user data (leanrining materials)
 - Aim was to understand how students in various clusters based on emotions (DLA) use learning materials based on LA data

UEF Analyses

Research 1

- Descriptive statistics (T1-T5)
 - Profiles base on mean (*M*) perustuen
- Paired sample t-test (bootstrap) for T1 and T5 measurement points
 - *M*, *SD*, Cohen's D (*D*) efect size (ES) (Cohen, 1988)

Research 2

- Cluster analysis (K-means) for emotions (T1)
 - Silhouette for goodness of fit (Kodinariya & Makwana, 2013)
 - Separation based on Kruskal–Wallis (Ostertagová ym., 2014) with Holmen *p* (Aickin & Gensler, 1996)
 - Epsilon sqr ES, 95 % confidence interval (Rea & Parker, 2014)
- LA data (learning materials use; time data) based on cluster
 - uninterrupted students' activities(López-Pernas et al., 2021)

Results research 1

UEF// University of Eastern Finland

Measured areas (T1-T5):

- Self-regulation of learning processes and results
- Lack of regulation
- Self-efficacy for learning
- Extrinsic goal orientation
- \mathbf{A}
- Mastery orientation

- > Enjoyment towards QRM

NO STATISTICALLY -- SIGNIFICANT CHAGES T1-T5

* Cohen *D* ES small (*D* = 0,2-0,5)

Measured areas (T1-T5):

 \succ

 \triangleright

- >
- Intrinsic goal orientation (INT) (D = 0.32*)
- Professional orientation (PROF) (D = 0.34*)

****** Cohen *D* ES intermediate (*D* = 0,5-0,8) ***** Cohen *D* ES small (*D* = 0,2-0,5)

Measured areas (T1-T5):

- Anxiety towards QRM (ANX) (D = 0.64**)
- Boredom towards QRM (BOR) (D = 0.51**)

****** Cohen *D* ES intermediate (*D* = 0,5-0,8) ***** Cohen *D* ES small (*D* = 0,2-0,5)

Measured areas (T1-T5):

- Self-regulation of learning processes and results
- Lack of regulation
- Task avoidance (AVO) (*D* = 0.71**)
- Self-efficacy for learning
- Extrinsic goal orientation
- Intrinsic goal orientation (INT) (D = 0.33*)
- Time management (TIM) (D = 0.38*)
- Mastery orientation
- Professional orientation (PROF) (D = 0.34*)
- Anxiety towards QRM (ANX) (D = 0.64**)
- Boredom towards QRM (BOR) (D = 0.51**)
- Enjoyment towards QRM

****** Cohen *D* ES intermediate (*D* = 0,5-0,8) ***** Cohen *D* ES small (*D* = 0,2-0,5)

Results research 2

UEF// University of Eastern Finland

Anxiety

Epsilon *ES*: negligible ($\epsilon^2 < 0.01$), weak ($\epsilon^2 = 0.01 - 0.04$), moderate ($\epsilon^2 = 0.04 - 0.16$), relatively strong ($\epsilon^2 = 0.16 - 0.36$), strong ($\epsilon^2 = 0.36 - 0.64$), very strong($\epsilon^2 = 0.64 - 0.99$)

Boredom

Epsilon *ES*: negligible ($\epsilon^2 < 0.01$), weak ($\epsilon^2 = 0.01 - 0.04$), moderate ($\epsilon^2 = 0.04 - 0.16$), relatively strong ($\epsilon^2 = 0.16 - 0.36$), strong ($\epsilon^2 = 0.36 - 0.64$), very strong($\epsilon^2 = 0.64 - 0.99$)

Enjoyment

Epsilon *ES*: negligible ($\epsilon^2 < 0.01$), weak ($\epsilon^2 = 0.01 - 0.04$), moderate ($\epsilon^2 = 0.04 - 0.16$), relatively strong ($\epsilon^2 = 0.16 - 0.36$), strong ($\epsilon^2 = 0.36 - 0.64$), very strong($\epsilon^2 = 0.64 - 0.99$)

OAHOT UEF

Use of learning materials

3 = Scared

Students of scared cluster transferred between tasks and materials statistically significantly **more** than students in other clusters indicating stronger self-regulation.

2 = Pro quantitative

Students of *Pro quantitative* **cluster** transferred between tasks and materials statistically significantly **less** than students in other clusters indicating (a) lower self-regulation or (b) less need for this type of regulation (i.e., it already exists)

Students in *Medium* **cluster** did not differ statistically from other clusters.

Students in Scared cluster were most active \rightarrow emotions can be activating or deactivating \rightarrow Flipped approach, LA and well estabilished digital learning environment support

SOWHAT Best ???

UEF Final thoughts

Remember to

- Guide <u>also</u> to teaching approach (also environment and technology)
- > Aim for understanding (at least try to!)
- Create safe atmosphere (places to ask from teacher/peers, discuss, contact [+ humor])
- > Make sure that you have even some skills to teach the content
- Make sure that your students can use ICT (and guide to this too!)
- Flipped works in distance education (DO NOT DO EOL!)
- Tandem use of technology gives and opportunity to reach students (FCK breakout rooms)
- Learning analytics and dispositional learning analytics gives additional means for teacher to support, reach and interact with students (i.e., "tactile horns")
- Consider also students' emotions --> can be activating or deactivating
- Do research

erkko.sointu@uef.fi

Kiitos!

UNIVERSITY OF EASTERN FINLAND